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A b s t r a c t

Asthma is one of the most common chronic diseases in the world, affecting
over 300 million people. It is an inflammatory disorder characterized by bron-
choconstriction and airway hyperresponsiveness, followed by inflammatory
manifestations in the respiratory system. The prevalence of asthma is rising
and there is a clinical need to develop more effective treatments. While corti-
costeroids (glucocorticosteroids) remain the mainstay of asthma therapy, they
have limitations because of their potentially severe side-effects and the pres-
ence of corticosteroid resistance in some patients. This review discusses cur-
rent strategies in the treatment of asthma and considers new therapeutic reg-
imens of asthma in the drug development pipeline.
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Introduction

Asthma is defined as a chronic disease characterized by bronchial hyper-
reactivity and lung inflammation, particularly within the airways. The air-
way inflammation is characterised by activation of mast cells, infiltration
of eosinophils, and increases in the number of activated T helper (Th)2
cells, which mediate allergic inflammation through the secretion of an
array of cytokines [1]. Chronic inflammation can lead to structural changes
in the airways, including airway smooth muscle cell hypertrophy and hyper-
plasia. Epithelial cell loss can also occur and expose irritant receptors to
potential stimuli such as chemicals or cold air. These structural changes
may underlie the irreversible component of airway narrowing that can
increase over many years, particularly in patients with severe disease.

Bronchodilators were useful in asthma management in the past but
this has changed since the introduction of corticosteroids (glucocorticos-
teroids). Corticosteroids have the added benefit of treating the underlying
inflammatory component of asthma and they have made a significant
contribution to asthma treatment by reducing hospitalisation and mortali-
ty [2]. Yet, despite the availability of these effective therapies, over half of
patients with asthma are poorly controlled [3]. This review discusses the
benefits and drawbacks of corticosteroids in current asthma treatment
and considers future drug targets.
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Current treatment options

Corticosteroids are widely used to treat a variety
of inflammatory and immune disorders. The most
common use of corticosteroids today is in the treat-
ment of asthma and other allergic diseases. Inhaled
corticosteroids have now become first-line treat-
ment in adults and children with persistent asthma.
Bronchodilators are important for relieving bron-
choconstriction and thus still remain major drugs
for asthma. This category includes the β2-adre-
noreceptor agonists, xanthines, cysteinyl leuko-
triene receptor antagonists and muscarinic recep-
tor antagonists. They only treat the bronchospasm
and have little effect on the inflammatory phase
and these drugs are thus limited to providing symp-
tomatic relief. Mast cell activation through the
release of bronchoconstrictor mediators is very
important for the symptoms of asthma, and mast
cell inhibitors such as cromones (sodium cromo-
glycate and nedocromil sodium) can also be used.
Recently, immunotherapy in the form of an anti-IgE
antibody (omalizumab) has proven useful and oma-
lizumab is currently licensed for severe asthmatics
in several countries including the USA and UK. Oma-
lizumab is an IgG1 monoclonal antibody that inter-
acts with serum free IgE to generate small com-
plexes [4]. The resulting reduction in IgE has been
confirmed in bronchi from patients with mild to
moderate asthma treated with omalizumab for 16
weeks as a reduction in high-affinity IgE receptor
expression and reduction in eosinophil numbers [5].

Limitations of corticosteroid treatment

Corticosteroids act by diffusing across cell mem-
branes and binding to the glucocorticoid receptors
(GR) in the cytoplasm. Cytoplasmic glucocorticoid
receptors are normally bound to heat shock pro-
tein-90 (hsp-90) and hsp-56 [6]. Two receptors have
been described, GRα and GRβ. GRα binds corti-
costeroids whereas GRβ is an alternatively spliced
form that binds to DNA but cannot be activated by
corticosteroids. GRβ has a very low level of expres-
sion compared to GRα. The GRβ isoform has been
implicated in steroid-resistant asthma [7].

All currently available inhaled corticosteroids are
absorbed from the lungs and thus have the poten-
tial for local and systemic side effects. Corticos-
teroids inhibit adrenocorticotrophic hormone and
cortisol secretion by a negative feedback effect on
the pituitary gland. This can produce unwanted sys-
temic effects with large doses or prolonged admin-
istration of corticosteroids. The side-effects include
suppression of responses to bacterial infection,
osteoporosis and Cushing’s syndrome. Significant
suppression after short courses of steroid therapy
is not usually a problem, but prolonged suppression
may occur after several months or years. Steroid

doses after prolonged oral therapy must also be re-
duced slowly, otherwise symptoms of steroid with-
drawal such as fatigue and musculoskeletal pains
may develop.

Although corticosteroids are highly effective in
the control of asthma, a small proportion of patients
do not respond, even when using maximal doses
of oral corticosteroids [8]. Steroid-resistant patients
present considerable management problems as
there are few alternative anti-inflammatory treat-
ments available. There may be several molecular
mechanisms for resistance to the effects of corti-
costeroids and these may differ between patients.
Recent work has shed light on the mechanisms
which underlie steroid resistance. One mechanism
may be due to oxidative stress, as this is increased
in patients with severe asthma [9]. Normally corti-
costeroids bind to GR and recruit histone deacety-
lase-2 (HDAC2). This reverses the histone acetyla-
tion induced by NF-κB and switches off the
activated inflammatory genes. In COPD cigarette
smoke generates oxidative stress to impair the
activity of HDAC2, resulting in amplification of the
inflammatory response to NF-κB activation and 
a reduction in the anti-inflammatory effect of cor-
ticosteroids. A similar mechanism may operate in
severe asthma where increased oxidative stress is
generated by airway inflammation. Other lines of
evidence suggest involvement of p38 MAP kinase
activation, defective histone acetylation and dis-
ruption of the coupling of GR receptor activation to
transcription factor inhibition [10-12].

Therapeutics under development

Significant progress has been made in recent
years to analyse and understand the myriad of
cytokines, chemokines, lipid mediators and signal-
ling cascades underlying asthmatic pathology. This
has yielded numerous drug targets but many have
shown limited efficacy beyond pre-clinical research.
Table I details a selection of compounds/biologics
that have reached Phase 2 clinical trial status [13-21].

Following the success of biologics in conditions
such as rheumatoid arthritis, monoclonal antibodies
targeting Th2 cytokines have been investigated. Anti-
cytokine therapies that have been investigated in-
clude monoclonal antibodies directed against IL-5,
tumour necrosis factor-α (TNF-α), and IL-4/IL-13.
Interleukin-5 is the cytokine primarily responsible
for eosinophil differentiation, maturation, migration
into the circulation and survival [22]. Eosinophils are
prominent in the airways of patients with poorly con-
trolled asthma and focusing treatment on reducing
their numbers has resulted in fewer severe asthma
exacerbations [23]. Mepolizumab, an agent that tar-
gets IL-5, demonstrated little benefit in initial studies
of mild to moderate asthmatic patients [24]. How-
ever, more recently, studies of this agent in severe
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steroid-resistant asthma showed that anti-IL-5
reduced asthma exacerbations significantly [25]. 
In studies of anti-TNF-α, there were no significant
improvements in any asthma outcome and, further-
more, the safety profile of this compound was not
favourable [26]. Interleukin-4 and IL-13 share many
biological functions which play a role in the patho-
genesis of asthma [27]. Corren et al. used AMG 317,
a fully human monoclonal antibody to IL-4R-α that
blocks both IL-4 and IL-13 pathways. This antibody
improved clinical symptoms in a subgroup of severe
asthmatics but not the entire study group [27].

Another approach to inhibit inflammation is to
block the adhesion molecules that are involved in
the recruitment of inflammatory cells from the cir-
culation into the airways [28]. Small molecule inhi-
bitors of very late antigen (VLA)-4, which is involved
in the recruitment of eosinophils and T cells, were
effective in animal models but success has been lim-
ited in trials with asthmatic patients [29, 30].

Major efforts have been undertaken to minimise
the side-effects of corticosteroids whilst still retaining
their valuable anti-inflammatory properties. One
approach has been the development of corticoste-

roids with enhanced specificity towards the GR re-
ceptor compared to other steroid receptors (e.g. the
androgen receptor or the mineralocorticoid recep-
tor). This approach has yielded compounds such as
fluticasone furoate, which has promising efficacy
in vitro and in vivo [31-33]. Fluticasone furoate (com-
bined with a long-acting β agonist) is under Phase III
trials to investigate clinical benefit in asthmatics [34].
Corticosteroids can reduce the expression of many
pro-inflammatory mediators via transrepression
whilst their adverse effects are due to the tran-
scription of genes involved in metabolic processes,
known as transactivation. Thus the selective glu-
cocorticoid receptor agonists (SEGRAs) or dissoci-
ated steroids are compounds in development to
have more transrepression rather than transacti-
vation activity [35, 36]. However, to date, these com-
pounds have not translated into successful thera-
pies in the clinical setting. 

Future therapeutic targets

Whilst we await the results of the clinical studies
described in Table I, continuing research is still yield-

AAggeenntt CClliinniiccaall  EEffffiiccaaccyy RReeffeerreenncceess
ttrriiaall  ssttaattuuss

AAnnttii--ccyyttookkiinnee  tthheerraappiieess

IL-4R-α Phase 2 Despite initial benefits in severe asthmatics, these compounds 27
antagonist have been discontinued

Anti-IL-5 Phase 2 Shown to reduce the number of severe asthma exacerbations 24, 25

Anti-IL-5R-α Phase 2 Reduces circulating eosinophils. Favourable safety, pharmacokinetic 13
and pharmacodynamic profile. Efficacy studies using IV and SC routes 
of administration still ongoing

Anti-IL-9 Phase 2b Modest improvements reported in patients with mild asthma undergoing 14
allergen challenge. Larger clinical studies underway in severe asthmatics

Anti-IL-13 Phase 2 Five anti-IL-13 compounds investigated. Early compounds reduced both early 15, 16
asthmatic response (EAR) and late  asthmatic response (LAR) 
Majority of Phase 2 results yet to be released

CChheemmookkiinnee  iihhiibbiittoorrss

CCR3 antagonist Phase 2 Orally active competitive antagonist, currently on trial for mild to moderate asthma 17

TToollll--lliikkee  rreecceeppttoorr  ttaarrggeettss

TLR7, TLR9 Phase 1 Effective in animal models of asthma, efficacy in human studies yet 18
synthetic agonists       and 2 to be determined

KKiinnaassee  iinnhhiibbiittoorrss

Syk kinase inhibitor Phase 2 In Phase 1, reported that the inhaled inhibitor is well tolerated, 19
planned with an improvement in both the EAR and LAR

c-kit/PDGF receptor Phase 3 In Phase 2, generated promising efficacy data and good safety profile 20
tyrosine kinase 
inhibitor

PPhhoosspphhooddiieesstteerraassee  iinnhhiibbiittoorrss

PDE 3/4 inhibitors Phase 2 Reduced EAR and LAR in naive atopic asthmatics in response 21
to inhaled allergen. However, orally administered drugs result in side effects 
such as gastro-intestinal symptoms

TTaabbllee  II.. Selection of asthma therapies undergoing clinical trials
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ing potential anti-inflammatory strategies. A num-
ber of potential therapeutic avenues will be dis-
cussed. It is also important to bear in mind that
although these compounds may show significant
promise during in vitro and animal studies, this
does not necessarily lead to improved outcome in
the clinic. In fact, despite their widespread use,
there are a number of limitations when using
mouse models of asthma such as differences in
anatomy and immunology. 

The phosphoinositide 3-kinase (PI3K) family of
enzymes consists of several closely related isoforms
that are thought to have distinct biological roles.
While PI3-kinase inhibitors exhibit poor selectivity
of different PI3K isoforms, recently published work
describes the next generation of PI3K inhibitors,
including several that are isoform-selective [37, 38].
This has prompted some researchers to speculate
that isoform-selective PI3K inhibitors will provide
new avenues for therapeutic applications in a range
of inflammatory diseases. In particular, PI3K-γ has
a role in chemotactic responses, and selective
inhibitors are in development [39, 40]. PI3K-δ acti-
vation attenuates steroid responsiveness; thus PI3K-
δ inhibitors could potentially reverse corticosteroid
resistance in severe asthma [41, 42]. A concern about
kinase inhibitors is their potential for side-effects
as they target signalling pathways found in many
cell types.

Cyclin-dependent kinases (CDKs) are a family of
serine/threonine kinases that regulate cell cycle
events through the phosphorylation of transcription
factors and tumour suppressor proteins required
in DNA replication and cell division. Therefore, CDKs
are important therapeutic targets for cancer ther-
apy and there are several CDK inhibitors undergo-
ing clinical evaluation for B cell malignancy, non-
small-cell lung cancer and breast cancer [43]. The
CDKs have been postulated as a target for anti-
inflammatory disorders. In particular, Hallett et al.
have suggested that induction of apoptosis in
inflammatory cells by CDK inhibitors may be anti-
inflammatory [44]. Indeed the CDK inhibitor R-
roscovitine induced human eosinophil apoptosis
[45], although animal studies have since suggest-
ed that induction of eosinophil apoptosis does not
reduce eosinophilic airway inflammation [46].
Cyclin-dependent kinases inhibitors may also have
another problem in terms of side-effects due to
non-CDK targets of these inhibitors [47].

More recent work has shown that activating
transcription factor-3 (ATF-3) is down-regulated in
severe asthmatics compared to mild asthmatics
[48]. This group also noted that the presence of cor-
ticosteroids enhanced the repression of ATF-3. Given
that ATF-3 is a negative regulator of inflammation
the authors suggest that agonists of ATF-3 may be
therapeutically useful in severe and steroid-resistant
asthma.

As highlighted above, the therapeutic efficacy of
many compounds targeting enzymes and receptors
is limited by their off-target effects. One avenue
that may circumvent this problem is to target at the
level of microRNAs. MicroRNAs are post-transcrip-
tional regulators of gene expression that can pro-
mote mRNA degradation or directly block protein
translation. Recent studies have demonstrated a role
for specific microRNAs in the asthmatic airways
(reviewed in [49]). Moreover, Collison et al. [50] have
shown that by blocking MiR-145 using a specific
antagomir, airway hyperresponsiveness and eosi-
nophil infiltration were reduced in a mouse model
of allergic asthma. Thus, inhibition of microRNAs is
emerging as a method for specific delivery of anti-
inflammatory therapy.

Conclusions

Asthma is a very complex disease which is made
up of a number of disease variants with different
underlying pathophysiologies. Given the numerous
mediators that may play a role in asthma, targeting
a single cytokine or chemokine is unlikely to provide
significant and prolonged clinical assistance. Indeed,
corticosteroids are effective because they suppress
multiple inflammatory mechanisms in parallel. The-
refore, after significant efforts, the challenge to treat
asthma still remains and the ultimate goal is to tar-
get multiple pathways and mediators without mul-
tiple side-effects.
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